a2 United States Patent
Chiba

US009426061B2

US 9,426,061 B2
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) COMMUNICATION SYSTEM, NODE,
CONTROL DEVICE, COMMUNICATION
METHOD, AND PROGRAM

(75) Inventor: Yasunobu Chiba, Tokyo (JP)
(73)

")

Assignee: NEC Corporation, Tokyo (IP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 97 days.

@
(22)

Appl. No.: 13/333,827

Filed: Dec. 21, 2011

Prior Publication Data

US 2012/0093158 A1 Apr. 19, 2012

(65)

Related U.S. Application Data

Continuation of application No. PCT/JP2011/062046,
filed on May 26, 2011.

(63)

(30) Foreign Application Priority Data

May 28,2010 (JP) wooooecceeeeeeeeeeeoeens 2010-123054
(51) Int.CL
HO4L 12/773
HO4L 29/06
HO4L 12/721
HO4L 12/24
USS. CL

CPC

(2013.01)
(2006.01)
(2013.01)
(2006.01)
(52)
HO4L 45/38 (2013.01); HO4L 41/0873
(2013.01); HO4L 45/60 (2013.01); HO4L 69/22
(2013.01)

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,154,776 A 11/2000 Martin
2005/0190694 Al* 9/2005 Ben-Nunetal. 370/229
2006/0171323 Al* 82006 Qianetal. 370/252
2008/0212613 Al* 9/2008 Perkinsonetal. ... 370/475

FOREIGN PATENT DOCUMENTS

JP 05-189318 A 7/1993
JP 9-098189 A 4/1997
JP H11-341053 A 12/1999
JP 2003-512799 A 4/2003
JP 2010-050719 A 3/2010
RU 2316906 C2 2/2008
(Continued)
OTHER PUBLICATIONS

Author Unknown, OpenFlow Switch Specification, Version 1.0.0, 31
Dec. 2009, pp. 1-42.*
Author Unknown, IEEE Standard 802.1Q-2005, pp. 1-285, 2005.*

(Continued)

Primary Examiner — Christopher Crutchfield
(74) Attorney, Agent, or Firm — McGinn IP Law Group,
PLLC

(57) ABSTRACT

A communication system includes a node that processes a
received packet; and a control device that sets a processing
rule, which defines a matching rule and processing for a
packet that conforms to the matching rule, in the node. The
node holds an identifier in association with a processing rule
and determines whether or not to perform processing for a
received packet depending upon whether or not an identifier
of'the received packet corresponds to an identifier associated
with a processing rule corresponding to a matching rule that
conforms to the received packet, wherein the processing is
performed according to the processing rule corresponding to
the matching rule that conforms to the received packet.

27 Claims, 33 Drawing Sheets

Step 1: Search for processing rule having

Control device (controller)

matchmg Tule that matches received packet
Step 2: Check that identifier of pracessing ruie that
has been searched for matches identifier of

received packet

Step 3: Perform processing according fo the
pracessing rule (for example: Forward to Host (B))
#famaich is canfirmed. Request control device
{controller) to create procassing rule if processing
fule is not found or if dentifiers do not mateh

Use Gata
N

Node #1
10

|

User data

Host (A)

Node #2

Host B)

US 9,426,061 B2
Page 2

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO WO 01/29676 Al 4/2001
WO WO 2011/115168 Al 9/2011
OTHER PUBLICATIONS

Nick McKeown, et al., “OpenFlow: Enabling Innovation in Campus
Networks”, [online], [Searched on Feb. 26, 2010] <URL: http://
www.openflowswitch.org//documents/openflow-wp-latest.pdf£>.
“OpenFlow Switch Specification” Version 1.0.0. (Wire Protocol
0x01) [Searched on Apr. 1, 2010] <URL: http://www.
openflowswitch.org//documents/openflow-spec-v1.0.0.pdf>.
Yasunobu Chiba, et al., A Proposal of Flow Entry Reduction Scheme
for Flow-based Networks and Its Implementation on OpenFlow-

based Network, IEICE Technical Report, NS2009-163(2010-03) pp.
7-12.

International Search Report in PCT/JP2011/062046 dated Aug. 16,
2011 (English Translation Thereof).

Japanese Office Action dated May 28, 2013 with a partial English
translation.

Notice of Grounds for Rejection dated Feb. 25, 2014, with partial
English translation.

Chinese Office Action dated Aug. 21, 2014 with an English transla-
tion.

Wei, et al., “Thesis for Master Degree of Engineering the OpenFlow
Switch Model and Research and Implement of Key Technology”,
Computer System Architecture, The Graduate School of National
University of Defense Technology , Nov. 2008, pp. 1-13.

Russian Decision of Grant dated Feb. 25, 2015 with an English
translation.

* cited by examiner

US 9,426,061 B2

Sheet 1 of 33

Aug. 23, 2016

U.S. Patent

(g) 1s0H

_ Elep 188N _._mcmmx

oL

0l

24 8PON _

14 9pON |

ﬁ LIRS _Bummr_ Blep JosN ~

N

EEIEREEZED
N\
\ N
Lol 10U OP SI8YAUSPI J| IO pUNO JOU S1 3N
Buissanoid Jt sjru Buissaooid ayeald o} {19)j0.u00)
801A9P [01U00 JSaNbaY "PatLYUOD S1 YojRW B
{{g} 1501 0y premiod :aidwexs 1oy) ajnu Buissasold
alp o) Buipioaoe Buissencid wiopad ¢ dalg
19%0ed panegal
10 J9YnUSP| SBYOIEW 10) PaydIess Ugaq sey
1| sy Buissacoud jo Jsyguapt jey yosys iz dalg
y9%0ed panigdal sayiew yeyy apns Bulyojew
Buey ajni Buissaooud Joj Uoseas ;| da)g

{49j03u00) 301ASP |04UOY)

| "Old

US 9,426,061 B2

Sheet 2 of 33

Aug. 23, 2016

U.S. Patent

(g) 150H

() 150H

| eiepJasp [eean

Ol

0l

T

Z# 9PON _ 1# OPON M

N

_ E_Emu;.anmmr“ Blep 198N T/

\l!!i’iLf/

YOJBUI JOU SB0D UOYBULIOJL
J5PR3Y i J0 PUNO} Jou $) ajnu Buisseooid y gjru Buisseooid
318312 0) {J9}0LUO0} 3DIAP (OL0O 1SBNLSY PSLLAYIOD
sl yojew e i {{g) 1S0H 0) piemuod ajdwexs ioj) ajn
Buissanoid s 0) buipionoe Buissanoid uuopad € da)g
1owoed

PaAIF8I §O gjn Buiyolew SOUDIeW SO} DAYDIRSS USSG SBY
1eu oy Buissaoaud jo apru Buiydiews jewy ¥oayg (7 daig
15)0ed PaAIDaI

0 19y4us0! Buisn sy Buissenod iof yotesg ;| daig

N 7

T

BYap| - Bummxw Blep losn _

1

{JO{{ORUOD) BOIASP [0UOY)

¢ 9Old

U.S. Patent Aug. 23,2016 Sheet 3 of 33 US 9,426,061 B2

20

Control device (controlier)
Node #2

Node #1

FIG. 3

US 9,426,061 B2

Sheet 4 of 33

Aug. 23, 2016

U.S. Patent

JAON
LINN
NOILYOINNWINOD JAON
\\t& »
oc l
LINN LINN DNISSIOOU/SISATYNY
NOILYRINTO 39vSSIn Zovssan ONISSIO0Hd FOVSSIN qombm_ww
/ i s = 1
AT 162 h GC |
LINN INIWNIOVYNYIN) LINNNOLLYTIND VD LINN INJNIOVNVA
AYLINI MOT4 NOILOV/HLYd A n A90170d01
1 — » 9 \\\I\ \\(\
ve £¢ e
k4 “
LINN NOILYY3NTD
g0 AYINT MO NOILYWHOANI ¢ gl mm_wm_&_\w_mww/z_
P ¢ o~ NOILYOII43A 1
L¢ 8¢ LC (437I0MINOD) 3OIAIA TOMLNOD
e
0c

v OlId

US 9,426,061 B2

Sheet 5 of 33

Aug. 23, 2016

U.S. Patent

G# HOd 0} IndinQ
X0 XD, Buipnoul Jepesy saowey X 4
Z# HOod 0} IndinQ
X3 X0, Bulpnjoul 1epest; 188 X i
£# Hod 0} IndinQ
a0 89, Buipnjoul Jspesy saowey g o
g0 v# Uod 0} Indino g Z
L # HOd 0} IndinQ
g0 89, Buipnjout sepesy 198 g i
L# Hod o} Inding
YO VY0, Buipnioul sepesy srowsy A4 €
VO 94 Hod o} IndinQ v Z
6# Hod 01 Inding
Yo V0, Buipnjout sepesy jo8 A4 {
uojjewojul (ayna Buyole)
UonBOILIBA SLONOY Aoy Bulyoleiy alda

¢ 9Old

US 9,426,061 B2

Sheet 6 of 33

Aug. 23, 2016

U.S. Patent

X X0
d d0
Y VO
(81ns Buiyoze) uoIjewIoUI
Koy m.:_r_oums_ uoiesLIdA
9 9Old

US 9,426,061 B2

Sheet 7 of 33

Aug. 23, 2016

U.S. Patent

om“z% ¥3sn
A
LINN NOLYIMOM
NOILND3AXT e NOLLYOIHIY3A
NOLIY 25l ONISSIO0N
M LINN HOYY3S 31gv1 ONIONYMYOS
m M\ \\ . & 5
121 g6l
d344N9 13M0Vd 318VL MO ot :zw %zmzmom_\z% . LINN NOLLYOINNWNOD
| ’ av.L MO - 3OIA3Q T0HINCD
pi el -~ el T
300N el Zl Li
\\I\ M
0l
(437104.1NOD)
30IA30 TO¥INOD

US 9,426,061 B2

Sheet 8 of 33

Aug. 23, 2016

U.S. Patent

G# Hod 0} IndinQ

XD X Q. Bulpnjoul jepesy anowey X
g0 # 1od 0} IndinQ g
vO o# Hod 0} IndinQ v
(8|na Buiyojen)
LONESIIBA SUONOY A8y Buiyojen

8 Old

US 9,426,061 B2

Sheet 9 of 33

Aug. 23, 2016

U.S. Patent

d3dv3aH TYNOILIAdY d3aav-NOILYWHOANI-NOILYDIJIYIA ‘€€

\\/»
- N
adk{ NOILYWHOAN adA| S vd
peojfed seuyg | NYIA L didL VS OV VA OV iy o WBURT | S | SR o
dk
peojied .M&w NYIA | CldL | VS Ovi QO OV

6 Ol

US 9,426,061 B2

Sheet 10 of 33

Aug. 23, 2016

U.S. Patent

ues ‘ A9y Buiyosjew
ypbua jejoy

:UO}euWIOjUl UOIJEDIJLIBA

adA] Jay)g

('Juoo) ys SVIN

VS OVIA

('3uo9) va osvii

e —————

L€

vd OVIA

0

0l Old

U.S. Patent Aug. 23,2016 Sheet 11 of 33 US 9,426,061 B2

FIG. 11

S001
Receive Packet-In
S002
Yes
verification information included
S003 S012
" - /*/
Acquire topology and Acquire flow entry and
calculate path verification information
5004
N
l Yes
Calculate action
S006
e
Generate verification [
information
, S007
Generate flow entry
S008
Generate FlowMod(Add) —
5009
Transmit FlowMod(Add)

Is packet buffered?

No

End

Transmit Packet-Out

S011

U.S. Patent

Aug. 23,2016 Sheet 12 of 33 US 9,426,061 B2
) S101
/
Receive packet -~
$102
W
Search in flow table d
§ $103
e
No
S104 sm
No s | Save user packet and
444444 — verification information s .
transmit inquiry to controllen
S112
—< Receive FlowMod(Add) —
Compare verification (acquire and set flow entry
information and verification information)
S113
Is user packet saved? No
S108 }
4 “ No Yes % S114 3116
Match? ¥ 4
Yes Read user packet Receive Packet-Out
No
[Is user packet saved?
S117
»ig A4 R
S107 ead user packet
X ™~
5118

Execute action

US 9,426,061 B2

Sheet 13 of 33

Aug. 23, 2016

U.S. Patent

uogoe
3)N09X3 UsL pue
‘UOREULIOJU] UOIBILLBA

YD ‘sie)
MOY U yoieag ZL1S

(g) 1s0H

UDIJOE B}N08XS PUB B|qE) MOy
0} UOHBULIOJU] UONBIILIBA PUB
airu Buissaoosd ppy 011

LofRLLIoUI co.amo%.g
}O8UD pue s|qe}
MOl U] Y2IE8g /| S

I —
Pa)ie} UOIBULIOJUY
Loieayuaa

pue 3jn Buissasod

J0 bumes ¢-v1S

A

9|qe] Mojj 0}
UONeULIoJUI UOIEDYLSA puB
ajn Buisseoold ppy 'z-61S

N\

1518

UoNBuULIO)Ul

UoledllIaA UOIIEULIDA

61S L-¥1S

{491|04u02) 80I1ABP jORUOY

() 1soH

B,

L# 9PON |
uonoe 3NosXa pue
9|qE} MO} O} UOleWIOU!
UOBOLLIGA pue ajnJ
(AR Buissaoold ppy ‘Z-£1S

l-€18

D,
(ppyipopmolL

€l Old

US 9,426,061 B2

Sheet 14 of 33

Aug. 23, 2016

U.S. Patent

{f} 1504

18408 J88N LIS

LIONO. BjM09%8 Uay) pue

‘LOIBLLIOJLI UOREDLBA ¥DBUD
‘8(qE} MO} Ul YoIBag ‘7118

le

"
VO IMIENDEL 188 1L LS

UGIOE B}1108%8 PUe
8/0€} MO} 0} UOIBULIIU! UHBIIJLIBA
pute ey Buissanoid ppy 0118

RN auﬁnmzsoi 818

UHISHOEL B1S

UONBULIOU] LONBOLLBA YOBUD
PUE 8|e} MO} Ul YoIeag /| S

o

3|02} MO} O} UOIJBULIOJUL LOITBDILID
pue ajnJ Buissasoid ppy z-61S

R

NO. /i (poY) pepmerd .w-w,rm

WO i jRNIB 1981 ‘a1

UGHOE BjlIaxs Pue
8|08} MO} O} UOIBULIOJU! LIOEOLISA
4 pue oy Buissacold ppy 7-¢19

0, i epy) uoshwam pLS

]
X3 M (BRY) DONMOLS TL-C LS

>

(M3TI04LNDD) £# 3PN

C#9PON

U0Bd TLS

A0IA3C T0HINCD

ol

OB 198 LIS

14 BPON () 1soH

vl Old

US 9,426,061 B2

Sheet 15 of 33

Aug. 23, 2016

U.S. Patent

G# Hod 0} Inding (x2 sepnoul pIay va ovIN)
XQ feuibuo 01 va DN 198 X z
Z# Uod 0} Inding
XA 03 VA OYIN 188 X L
S# 10d 01 Inding (g9 sepnjoul p1ay va oviN)
2a reuibuo 01 va JviN 18S g £
(g0 sepnjoul pjay va ovin)
¥# L0 01 Inding g Z
£ #¥0d 0} ndinQ
20 01 va OYIN 18S g {
L# uod oy indingo (v sspnjoul pioy va JDvIN)
1@ 1eubuc 01 va DY 189S Al £
(v sspnjoul p1ay va ovIN)
o# Hod 03 Inding Y Z
8# Hod 0} IndinQ
430l va YN 18S v L
(anu Buiyoyepy)
SUONOY Aay Buiyoley alda

Gl oOld

US 9,426,061 B2

Sheet 16 of 33

Aug. 23, 2016

U.S. Patent

X €0:00:00-00:00:00 c# X0
d ¢0:00:00:00:00:00 1% g0
\4 10-:00-00:00-00:00 °H VO
(ana buyosyep) va OV uoljewLIojul
K9y Buiyojew jeulblip [euibuo doy jseq uonesyLIaA
9l 9Ol

US 9,426,061 B2

Sheet 17 of 33

Aug. 23, 2016

U.S. Patent

o_téﬁh ¥asn
¥
e
LV
LINNNOILNO3XT 4 zo_?o_”_mww>
NOILDY
ezGl 1INN
LINM HOWV3S 378vL DNISSID0YHd QUYMYOS
o= ; P 4 I
e
ey 1411 BCGL
’ NERT— T19YL MO — :zm #%ﬁwﬁé e——s] LINNNOILYOINNWINOD
’ 30IA30 TOHLINOD
\\K Y
300N eel 4 L
—— |
EQL (43T704.LNOD)
JOINIA TOHLINOD

Ll "Old

US 9,426,061 B2

Sheet 18 of 33

Aug. 23, 2016

U.S. Patent

G# Hod o} indinp
vd OVIN [eulBuo 0} yq DVIN 189S

(X0 sapnjout pjay va ovin)
X

pod o1 indinp

(99 sepnjoul pjay va ovin)
g

O# Hod 0} Indino

(VD sepnjoul pjay va ovin)
Y

SUonoY

(ains Buiyojep)
Aay Buiyosyep

81 Ol

US 9,426,061 B2

Sheet 19 of 33

Aug. 23, 2016

U.S. Patent

(s)uswinfBie se
Y@ DV feutbuo pue apou doy (papnpout
L -1S€| Jo (Id@ Buisn uonouny Ag st uoeWLIOjUI UOKEIYLIOA
$0dA1912'21/°91 pajenaeo)ya VN peonpay 1By} sajeolpui) paxi4
I\’/{!
~ R & ~ "
(pues ‘Asy Buyorew) €] {vQ OVW ‘spou do jee)) Q ~ mexxxx
/3 vC €C 8L 0
d A
peojfeq mﬁm NYIA | aidL |vs o fva ovi
Pl
R
ece
dX
peoifed mmm NVIA | QidL | VS OViN|va OV

61 Old

U.S. Patent

End

Aug. 23, 2016 Sheet 20 of 33 US 9,426,061 B2
5001
Receive Packet-In
S002a
Verification information Yes
included ig MAC DA
No] 5003 S012
¥ //
Acquire topology and Acquire flow entry
calculate path
i
‘ S004
Yes
S005
Calculate action
S006
Generate
verification information
S007
|
Generate flow entry
S008
Generate FlowMod(Add) —
S009
Transmit FlowMod(Add)

Transmit Packet-Qut

U.S. Patent

Aug. 23,2016 Sheet 21 of 33 US 9,426,061 B2
FIG. 21 Sio1
Receive packet
S102
Search in flow table
$103
No
S104
2 Si11
s No . s
verification information Save user packet and
included i transmit inquiry to controller
5105 5112
v /—/
Compare Reqe:ve FlowMod(Add)
verification information (acquire and set flow entry)
S113
Is
user packet No
saved?
i 5106
No Yes S114 5116
Match? =
Yes Read user packet Receive Packet-Out
!
Is
user packet
saved?
Yes
S117
> 5757 y Read user packet

Execute action

S118

US 9,426,061 B2

Sheet 22 of 33

Aug. 23, 2016

U.S. Patent

G# 10d 01 Indingo

X2, mEonE iepesy BAOWBY NX 2
Z# Vod o} inding

XZ0. Buipnjout 1speey jeg LX |
£# Hod o} jnding

HED, Buipniour Jepeay arowsy g €
it UOd o} Inding

8¢9, Buipnjout Jepesy 1eg cg P
. #1od 01 ndinD

820, Buipnjour tepesy 189 g l
L# WOd 0} inding

VED,, Buipnput sspeay aaowey (%4 e
9# Y04 o Indinp

¥eQ, Buipnput Jspesy 185 A4 Z
6# H0d 0} Inding

20, bupnjoul Jepesy 18g A L

(ajna Buyayen)
SLONOY Koy Buiyoje aidg

¢¢ Old

US 9,426,061 B2

Sheet 23 of 33

Aug. 23, 2016

U.S. Patent

X c XCO

%2 € daed

TAS N d¢d

eV € veO

A" c VZo
(aina Buiyojepn) uoljew.ojul
Aay Buiyojep alda uonesIIaN

€ 9Ol

US 9,426,061 B2

Sheet 24 of 33

Aug. 23, 2016

U.S. Patent

G# Hod 01 indino

XZO | .XZD, Buipnjoul sjepesy anoway ZX
p# LWod 0} Indino
az0 .8€0, Buipnjour Jepesy jog Zg
O# Hod 0} Indino
vZo €D, Buipnjoul Jepeasy jog A
uonewIOUI (81na1 Buiyozep)
UOIIBDIJLIBA SUoHOY Koy Buiyojep

v¢ Old

US 9,426,061 B2

Sheet 25 of 33

Aug. 23, 2016

U.S. Patent

G# HOd 01 IndIng
XQ [euibuo 0} yg DV 18S

(X2 sepnpout paly Ya DY)
—x

Zit Hod o1 Inding
Xa 01 va OVIN 188

X

¢# Hod o1 Inding
2 rewbuo 0} va DVIN 198

(€0 sapnjoul pidY va ovin
mnm

v# Lo O} Inding
20 01 Yd DY 18S

(920 sepnjoul pisly Ya DY)
g

L # Hod oy inding
<0 01va OviA 188

g

L# wod o1 indinp
1a 1BuiBuo 0} 3 DY 198

(V€D sepnjoul pial vd DVIN)
:<

9# Lod 0} Inding
.10 0l vd OVYIN 18S

(WZD sepnjoul piey vad DY)
Q<

6% HOd o1 inding
A0 01 v3 OVIA 188

A4

sSuonOY

(aina Buryoyep)
Aoy Buiyojep

aidg

G¢ 9Ol

US 9,426,061 B2

Sheet 26 of 33

Aug. 23, 2016

U.S. Patent

X €0-:00-00:00-:00:00 CH# c XCO

£g 20-00-:00:00:00:00 eH e dae0

TAS ¢0:00:00:00:00:00 C# 2 ac0

14 L0-:00:00:00:00:00 CH e YeD

A4 10-00:00:00:00:00 e [V2o
(ain4 Buiyojew) va OV uoljewiouy
K8y Buiyojew jeutbliQ leuibuQ doy jseq dlda |uonesyuap

US 9,426,061 B2

Sheet 27 of 33

Aug. 23, 2016

U.S. Patent

G# HUOd 01 Indino
XQ@ leuibuo 0} ya JvIN 189S

(XZD sepnjoul pial va DOVINY)
X

HOd 0} IndinQ
«€d 01 VA JVIN 18S

(92D sepnjoul pidl va OVIN)
g

O# Hod 0} Indino
«1d 01 va JVIN 18S

(V2D sepnjoul pial va DVINY)
A/

SUOINOY

(ain4 Buiyojepy)
Aoy Buiyoyep

¢ 9Old

US 9,426,061 B2

Sheet 28 of 33

Aug. 23, 2016

U.S. Patent

d30v3H TYNOLLIAdY a3aav-NOILYWHOANI-NOILYOIHIN3A ‘age

AN
I ™
5aK] 1] ax
Lol Lo a0At Ve va
peoiied g3 | WA | aidL |vs ovi | va ovi N \ wopeoyen | WOUST | DLl TS YA
* il
azce
ax
peoifed s | NYIA | QL |vs ovi|va ovi
ad
}¢

8¢ Ol

US 9,426,061 B2

Sheet 29 of 33

Aug. 23, 2016

U.S. Patent

(pueu ‘x#1e A9 Buiyojew)y :uopewsopu uoneoyyop

X#didd _
|

(pued ‘g4 3 A3 Buiyojew)j :uonewiopu: uoyesyo

e#didd

AU:m._ .N% je) m:_r_oﬂ.mev&. :uolnjewiojul uoneaLIBA

Yyybua |ejo]

Fllid{
adA] Joy)g

(‘3uo2) vs oVIN

VS OVIN

(3uo092) va ovin

vd OVIA

E

1€

0
6¢ Ol

US 9,426,061 B2

Sk
s | suony vod isp wod 218 ML oo | va | vs dod al sdAy v Vs vog

[»] N
dan/dal | daorvdor | S a_,r di L dl | od | NVIA | NYIA | w3 | seum | seum | oy SPIEIDIM

Sheet 30 of 33

Aug. 23, 2016

U.S. Patent

——
Aoy mo|4

14V d0Idd 0¢ "OI4

US 9,426,061 B2

Sheet 31 of 33

Aug. 23, 2016

U.S. Patent

UoHe pauljap Jopuap dOAaN3A
ananb payoads o} jnding aN3INONI
Hod uoneunsag dan/doL eyepdn 1S0°dL 138
}Hod 92.1n0g dan/daL ayepdn J4S d1 138
va di #epdn 1SAMN L3S
VS dI ®jepdn JHS MN 138
va OV 8sepdn 180710138
VS OVIN 8lepdn o4ST10°13S
bel Nv1A bi°z08333) ding NYIAdIHLS
Ayuolid NVIA paiioads yym beg NyA ajepdnjppy dOd'NYIA L3S
al NYIA pauioads yyim Be| NvA 8jepdn/ppy QIA'NYIA L3S
Hod payioads 0} yndjno LNd1no
uoljoe Jo sjusjuo’) awieu uonay
14V HOIdd L€ O]

US 9,426,061 B2

Sheet 32 of 33

Aug. 23, 2016

U.S. Patent

(g Aoy Buyojew)
Aua moy Buiyojew oy
Buipuodsauioo uonoe a)noaxa
Pue ajqe) Moy ut yaseas /1S

{# Hod oy indino

8

Z# Hod o} inding

v

uonoy fey Buiyorey

spuo
Yyoseas

8[qe)} MOl

E# SPON

Anus moy ppy

N
pakejap si Aijus
2618 Moy jo Bumes z-1S

1-§18

Anus moy ppy
¢-els

{ppyipopmo 4

g AR

(19fj013u00) 808P 011LOD

LIV HOId zg 9|4

US 9,426,061 B2

Sheet 33 of 33

Aug. 23, 2016

U.S. Patent

1 BN0Bd J8sN OIS
o}
Boed Josn Bs

posjuesens | Kidow 1ouea o5 1

co_somxmw

PONMO| 4 o

psonbay Jerueg /s i

ONMO|] '9s
pesealou] e Gm.,SU WMOL4 ‘g
feiaQ posjueenb ! | gdaw sorsee - '
co_somxmw idey souieg ‘gs
popmoy: >
i f1senbay Jstieg ps
{ppv) popymol €5
) ui-jaNoed 'gs
s
1BYoBd JOsn LS
(9) 1s0H 800 . %o
(i8fjonuo0) Z# 8poN L# 8PON () 1s0H
90IASP j0NUOD)

iajjoguon

14V H0ldd

-

€€ old

/

US 9,426,061 B2

1

COMMUNICATION SYSTEM, NODE,
CONTROL DEVICE, COMMUNICATION
METHOD, AND PROGRAM

TECHNICAL FIELD

This application is a continuation of International Appli-
cation No. PCT/JP2011/062046, filed on May 26, 2011,
claiming priority of Japanese Patent Application No. 2010-
123054, filed on May 28, 2010, both disclosures of which
are incorporated herein by reference in their entireties.

The present invention relates to a communication system,
a node, a control device, a communication method, and a
program, and more particularly to a communication system,
a node, a control device, a communication method, and a
program for carrying out communication by forwarding
packets via the nodes arranged on a network.

BACKGROUND

Recently, the technology called OpenFlow is proposed as
described in Non-Patent Documents 1 and 2. OpenFlow
identifies communications as end-to-end flows and performs
path control, failure recovery, load balancing, and optimi-
zation on a per-flow basis. An OpenFlow switch, which
functions as a forwarding node, has a secure channel for
communication with an OpenFlow controller, and operates
according to the flow table to which information is added,
and whose contents are rewritten, according to an instruction
from the OpenFlow controller as necessary. In the flow table,
a set of the following three is defined for each flow: a
matching rule (FlowKey/Matching key) against which a
packet header is matched, an action (Action) that defines
processing contents, and flow statistical information (Stats)
(see FIG. 30).

FIG. 31 shows an example of the action names and the
contents of the actions defined in Non-Patent Document 2.
OUTPUT is an action for outputting a packet to a specified
port (interface). SET_VLAN_VID to SET_TP_DST are
actions for modifying the fields of the packet header.

For example, when a first packet is received, the Open-
Flow switch searches the flow table for an entry that has a
matching rule (FlowKey) that matches the header informa-
tion of the received packet. If an entry matching the received
packet is found as a result of the search, the OpenFlow
switch performs the processing contents, described in the
Actions field of the entry, for the received packet. On the
other hand, if an entry matching the received packet is not
found as a result of the search, the OpenFlow switch
forwards the received packet to the OpenFlow controller via
the secure channel, requests the OpenFlow controller to
determine a packet path based on the transmission source/
destination of the received packet, receives a flow entry for
the packet path, and updates the flow table.

[Non-Patent Document 1]

Nick McKeown and seven other authors. “OpenFlow:
Enabling Innovation in Campus Networks”, [online],
[Searched on Feb. 26, 2010], Internet <URL: http://
www.openflowswitch.org//documents/openflow-wp-lat-
est.pdf>

[Non-Patent Document 2]

“Openflow Switch Specification” Version 1.0.0. (Wire Pro-
tocol 0x01) [Searched on Apr. 1, 2010], Internet <URL:
http://www.opentlowswitch.org/documents/openflow-
spec-v1.0.0.pdf>

SUMMARY

The disclosure of the Non-Patent Documents given above
is hereby incorporated by reference into this specification.

10

15

20

25

30

35

40

45

50

55

60

65

2

The following analysis is given by the present inventor.
The OpenFlow controller, which receives the above-de-
scribed request for determining the path of the received
packet (see s2 Packet-In in FIG. 33), determines the for-
warding path of the received packet. To forward the received
packet and the subsequent packets, which belong to the same
flow, to host (B), a flow entry must be set in all OpenFlow
switches on the forwarding path (node #1 and node #2 in
FIG. 33). In addition, based on an instruction from the
network administrator, the OpenFlow controller must some-
times change the action of a flow entry that is already set
and, in this case, must change or delete the flow entry.

When a flow entry described above is set, changed, or
deleted via the OpenFlow protocol (see “4.6 Flow Table
Modification Messages” in Non-Patent Document 2), a
communication delay is sometimes generated between the
OpenFlow controller and an OpenFlow switch. This delay,
in turn, causes a delay in setting, changing, or deleting a flow
entry in some of the OpenFlow switches. As a result, in an
OpenFlow switch on the path, a packet matches an unin-
tended flow entry in the flow table with the problem that an
unintended action will be executed.

FIG. 32 is a diagram showing an example where, when an
OpenFlow switch (node #1) receives a packet to be trans-
mitted from host (A) to host (B) and requests the controller
to create a flow entry, a delay is caused in setting a flow
entry, which has the matching key X, in the relay switch
(node #2). In the example in FIG. 32, node #2 has a flow
entry having the matching key B that conflicts with the
matching key X of the flow entry to be set (In the OpenFlow
protocol, a partial match with any header field is allowed as
a matching key and the avoidance of conflict between flow
entries is controlled according to the flow entry search
order). Therefore, in node #2, the packet transmitted from
host (A) is transmitted, not to port #2 to which the packet
should be transmitted, but to port #1, before the flow entry
setting is completed (ST8 in FIG. 32). In this way, when the
OpenFlow protocol is used, an unintended forwarding path
(action execution) may be caused easily due to a setting
delay of a flow entry.

One possible method for solving this problem is shown in
FIG. 33. That is, the (OpenFlow) controller transmits a flow
entry to nodes #1 and #2 (see FlowMod(Add) indicated by
s3 and s6 in FIG. 33) and, at the same time, transmits a
Barrier Request defined by the OpenFlow protocol (see
“5.3.7 Barrier Message” in Non-Patent Document 2 for
Barrier Request; Barrier Request/Reply indicated by s4 in
FIG. 33). When the Barrier Request is received, the node
completes the execution of the processing, which has been
received before the Barrier Request is received, and
responds with “Barrier Reply” (s5 in FIG. 33). This response
allows the (OpenFlow) controller to confirm that the flow
entry has been set correctly. The problem with this method
is that the (OpenFlow) controller must exchange the Barrier
Request/Reply with all nodes in which a flow entry is set,
thus increasing the time before the user packet can be
transmitted (s1(User Packet)-s10(User packet) in FIG. 33).

Another method is to use Stats Request/Reply, instead of
Barrier Request/Reply described above, to check if each
node has the corresponding entry. As with the method in
which Barrier Request/Reply is used, this method also
requires the exchange of messages with all nodes, in which
a flow entry is set, to check if the flow entry is set correctly,
thus increasing the time before the user packet can be
transmitted (s1(User Packet)-s10(User packet) in FIG. 33).

In addition, if some flow entries are lost due to a node
failure after the flow entries are set, both the method in

US 9,426,061 B2

3

which Barrier Request/Reply is used and the method in
which Stats Request/Reply is used cannot avoid an unin-
tended action from being executed.

In view of the foregoing, it is an object of the present
invention to provide a communication system, a node, a
control device, a communication method, and a program for
preventing the problems, such as those described above, in
which an incorrect processing rule (flow entry) is hit node
and an unintended processing is executed.

According to a first aspect of the present invention, there
provided a communication system, comprising a node(s)
that processes a received packet; and a control device that
sets a processing rule in the node, the processing rule
defining a matching rule and processing for a packet that
conforms to the matching rule, wherein the node holds an
identifier in association with a processing rule and deter-
mines whether or not to perform processing for a received
packet depending upon whether or not an identifier of the
received packet corresponds to an identifier associated with
a processing rule corresponding to a matching rule that
conforms to the received packet, the processing being per-
formed according to the processing rule corresponding to the
matching rule that conforms to the received packet.

According to a second aspect of the present invention,
there is provided a node that holds a processing rule in
association with an identifier, the processing rule defining a
matching rule and processing for a packet that conforms to
the matching rule and determines whether or not to perform
processing for a received packet depending upon whether or
not an identifier of the received packet corresponds to an
identifier associated with a processing rule corresponding to
a matching rule that conforms to the received packet and
thereby processes the received packet, the processing being
performed according to the processing rule corresponding to
the matching rule that conforms to the received packet.

According to a third aspect of the present invention, there
is provided a control device, that generates a processing rule
that defines a matching rule and processing for a packet that
conforms to the matching rule, generates an identifier which
is associated with the processing rule and which allows a
node(s) to determine whether or not to perform processing
for a received packet, the processing being performed
according to the processing rule corresponding to the match-
ing rule that conforms to the received packet, and sets the
processing rule and the identifier in the node(s) that is
arranged in a communication system for processing a
received packet.

According to a fourth aspect of the present invention,
there is provided a communication method, comprising the
steps of: holding a processing rule in association with an
identifier, the processing rule defining a matching rule and
processing for a packet that conforms to the matching rule;
and determining whether or not to perform processing for a
received packet depending upon whether or not an identifier
of' the received packet corresponds to an identifier associated
with a processing rule corresponding to a matching rule that
conforms to the received packet, and thereby processing the
received packet, the processing being performed according
to the processing rule corresponding to the matching rule
that conforms to the received packet. This method is com-
bined with a particular machine called a node for processing
a received packet.

According to a fifth aspect of the present invention, there
is provided a communication method, comprising the steps
of generating a processing rule that defines a matching rule
and processing for a packet that conforms to the matching
rule; generating an identifier which is associated with the

10

15

20

25

30

35

40

45

50

55

60

65

4

processing rule and which allows a node(s) to determine
whether or not to perform processing for a received packet,
the processing being performed according to the processing
rule corresponding to the matching rule that conforms to the
received packet; and setting the processing rule and the
identifier in the node(s) that is arranged in a communication
system for processing a received packet. This method is
combined with a particular machine called a control device
that sets the processing rule in a node(s) that processes a
received packet.

According to a sixth aspect of the present invention, there
is provided a program causing a node(s), provided in a
communication system to process a received packet, to
perform the processing of storing a processing rule in
association with an identifier, the processing rule defining a
matching rule and processing for a packet that conforms to
the matching rule; and determining whether or not to per-
form processing for a received packet depending upon
whether or not an identifier of the received packet corre-
sponds to an identifier associated with a processing rule
corresponding to a matching rule that conforms to the
received packet, the processing being performed according
to the processing rule corresponding to the matching rule
that conforms to the received packet. This program may be
recorded on a computer readable recording medium. That is,
the present invention may be embodied as a computer
program product.

According to a seventh aspect of the present invention,
there is provided a computer program causing a control
device, provided in a communication system to control a
node(s) which processes a received packet, to perform the
processing of generating a processing rule that defines a
matching rule and processing for a packet that conforms to
the matching rule; generating an identifier which is associ-
ated with the processing rule and which allows a node(s) to
determine whether or not to perform processing for a
received packet, the processing being performed according
to the processing rule corresponding to the matching rule
that conforms to the received packet; and setting the pro-
cessing rule and the identifier in the node(s). This computer
program may be recorded on a computer readable recording
medium. That is, the present invention may be embodied as
a computer program product. Also the program may be
regarded as either a program product (i.e. manufacture) or a
process embodying the communication method (process),
expressed in a program language.

The meritorious effects of the present invention are sum-
marized as follows without limitation. According to the
present invention, the execution of unintended processing
can be prevented in a node(s) arranged in a data forwarding
network.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing the outline of the present
invention.

FIG. 2 is another diagram showing the outline of the
present invention.

FIG. 3 is a diagram showing the configuration of a
communication system in a first exemplary embodiment of
the present invention.

FIG. 4 is a block diagram showing the configuration of a
control device (controller) in the first exemplary embodi-
ment of the present invention.

FIG. 5 is a diagram showing the information held in a flow
entry DB of the control device (controller) shown in FIG. 4.

US 9,426,061 B2

5

FIG. 6 is a diagram showing the information held in a
verification information DB of the control device (control-
ler) shown in FIG. 4.

FIG. 7 is a block diagram showing the configuration of a
node in a first exemplary embodiment of the present inven-
tion.

FIG. 8 is a diagram showing the information held in a flow
table of the node shown in FIG. 7.

FIG. 9 is a diagram showing an example of a packet which
includes verification information (or to which verification
information is added).

FIG. 10 is a diagram showing an example of the configu-
ration of a verification-information-added additional header
shown in FIG. 9.

FIG. 11 is a flowchart showing the operation of the control
device (controller) in the first exemplary embodiment of the
present invention.

FIG. 12 is a flowchart showing the operation of a node(s)
in the first exemplary embodiment of the present invention.

FIG. 13 is a reference diagram showing a sequence of
flow in the communication system in the first exemplary
embodiment of the present invention.

FIG. 14 is a sequence diagram showing a sequence of the
flow in the communication system in the first exemplary
embodiment of the present invention.

FIG. 15 is a diagram showing the information held in a
flow entry DB of a control device (controller) in a second
exemplary embodiment of the present invention.

FIG. 16 is a diagram showing the information held in a
verification information DB of the control device (control-
ler) in the second exemplary embodiment of the present
invention.

FIG. 17 is a block diagram showing the configuration of
a node in the second exemplary embodiment of the present
invention.

FIG. 18 is a diagram showing the information held in the
flow table of the node shown in FIG. 17.

FIG. 19 is a diagram showing an example of a packet in
which verification information is included (embedded).

FIG. 20 is a flowchart showing the operation of the
control device (controller) in the second exemplary embodi-
ment of the present invention.

FIG. 21 is a flowchart showing the operation of a node in
the second exemplary embodiment of the present invention.

FIG. 22 is a diagram showing the information held in a
flow entry DB of a control device (controller) in a third
exemplary embodiment of the present invention.

FIG. 23 is a diagram showing the information held in a
verification information DB of the control device (control-
ler) in the third exemplary embodiment of the present
invention.

FIG. 24 is a diagram showing the information held in the
flow table of a node in the third exemplary embodiment of
the present invention.

FIG. 25 is a diagram showing the information held in a
flow entry DB of a control device (controller) in a fourth
exemplary embodiment of the present invention.

FIG. 26 is a diagram showing the information held in a
verification information DB of the control device (control-
ler) in the fourth exemplary embodiment of the present
invention.

FIG. 27 is a diagram showing the information held in the
flow table of a node in the fourth exemplary embodiment of
the present invention.

FIG. 28 is a diagram showing an example of a packet used
in a fifth exemplary embodiment of the present invention.

15

20

25

30

40

45

55

65

6

FIG. 29 is a diagram showing an example of the configu-
ration of the verification-information-added additional
header in FIG. 28.

FIG. 30 is a diagram showing the configuration of a flow
entry described in Non-Patent Document 2.

FIG. 31 is a diagram showing the action names and the
contents of the actions described in Non-Patent Document 2.

FIG. 32 is a diagram showing the operation of the
OpenFlow controller (controller) and a flow switch (node)
described in Non-Patent Document 2.

FIG. 33 is a reference diagram and a sequence diagram
showing a sequence of operation for setting a flow entry
reliably using the OpenFlow protocol described in Non-
Patent Document 2.

PREFERRED MODES

First, the following describes the outline of an exemplary
embodiment of the present invention. Note that the drawing
reference numerals appended to this outline are exemplary
only to help understanding but do not intend to limit the
present invention to the mode shown in the figures. As
shown in FIG. 1, when a packet is received, a node 10 (see
node #2 in FI1G. 1) of a communication system of the present
invention extracts a processing rule, which conforms to the
received packet, using the matching rule (matching key)
included in the processing rule held in the device itself (step
1). Next, the node 10 (see node #2 in FIG. 1) checks if
(whether or not) the identifier associated with the extracted
processing rule is identical with the identifier included in the
received packet (step 2). Although, in the above description,
the node 10 checks that the identifier associated with the
processing rule is identical with the identifier included in the
received packet, the present invention is not limited to this
method. For example, the present invention includes a case
in which the node 10 checks that the identifier associated
with the processing rule corresponds to the identifier
included in the received packet. This applies also to the
subsequent steps and exemplary embodiments. If it is con-
firmed as a result of the checking that the identifier associ-
ated with the processing rule matches the identifier of the
received packet, the node 10 (see node #2 in FIG. 1)
performs processing according to the processing rule (step
3.

The above-described identifier is information generated
by a control device (controller) 20 in association with the
processing rule. The identifier is generated and attached so
that the processing rules that may conform to a received
packet can be identified. Therefore, if a processing rule is
extracted through the search using a matching rule (match-
ing key) but if the identifier does not match that of a received
packet, the action of the processing rule is not performed. An
identifier is included in a user packet in various ways, for
example, an identifier is added to the user packet as shown
in FIG. 1 and FIG. 2 or is embedded in a particular area of
the user packet (see FIG. 19).

The configuration described above avoids an unintended
action from being executed even when a condition men-
tioned before in this specification occurs, for example, when
the setting of a processing rule is delayed or when a part of
a flow entry is lost due to an error in the node.

In the example in FIG. 1, the node extracts a processing
rule that conforms to a received packet using a matching rule
(matching key) and, after that, checks if the identifier
associated with the extracted processing rule matches the
identifier of the received packet. Instead of this, another
method is also possible as shown in FIG. 2 in which the node

US 9,426,061 B2

7

extracts a processing rule that conforms to a received packet
using an identifier and, after that, checks if the matching rule
(matching key) of the extracted processing rule matches the
contents of the received packet (header information to be
compared with the matching rule (matching key)).

In this case, too, if a processing rule is extracted through
the search using an identifier but if the matching rule
(matching key) does not match the contents (header infor-
mation) of a received packet, the action of the processing
rule is not performed. As in the configuration shown in FIG.
1, this configuration also avoids an unintended action from
being executed, for example, when the setting of a process-
ing rule is delayed.

(First Exemplary Embodiment)

Next, a first exemplary embodiment of the present inven-
tion will be described in detail with reference to the draw-
ings. FIG. 3 is a diagram showing the configuration of a
communication system in the first exemplary embodiment of
the present invention. Referring to FIG. 3, the communica-
tion system comprises three nodes 10, a control device
(controller) 20, and hosts (A) and (B) that communicate with
each other via the nodes 10. Although the three nodes 10, the
control device (controller) 20, and the two hosts (Host(A),
Host(B)) are shown in the example in FIG. 3, any number of
nodes, control devices (controllers), and hosts may be used.

FIG. 4 is a diagram showing the detailed configuration of
the control device (controller) 20. Referring to FIG. 4, the
control device (controller) 20 comprises a flow entry data-
base (flow entry DB) that stores processing rules (flow
entries) and verification information related to the process-
ing rules; a topology management unit 22 that builds net-
work topology information based on the connection relation
of the nodes 10 collected via a node communication unit 26;
a path/action calculation unit 23 that calculates a packet
forwarding path and an action to be executed by the node 10
on the forwarding path based on the network topology
information built by the topology management unit 22; a
flow entry management unit 24 that establishes the associa-
tion between a processing rule (flow entry) and verification
information which are calculated respectively by the path/
action calculation unit 23 and a verification information
generation unit 28, registers the associated processing rule
(flow entry) and verification information in the flow entry
DB 21, processes a processing rule (flow entry) addition
request received from the node 10, and updates a processing
rule (flow entry) and verification information; a control
message processing unit 25; a node communication unit 26
that communicates with the node 10; and a verification
information generation unit 28 that, in response to a request
from the flow entry management unit 24, generates verifi-
cation information to be associated with a processing rule or
retrieves verification information from a verification infor-
mation database (verification information DB) 27. The veri-
fication information refers to information corresponding to
the identifier used to verify the result of comparison
(matched or not) between a received packet and a processing
rule based on the matching rule.

In addition, the control message processing unit 25 com-
prises a message analysis/processing unit 251 that analyzes
a control message received from the node 10 and performs
necessary processing and a message generation unit 252 that
generates a message to be transmitted to the node 10.

FIG. 5 is a diagram schematically showing information
held in the flow entry DB 21 (flow entry and verification
information). For example, the first to third entries from the
top of FIG. 5 indicate the processing rules (flow entries) that
are set in the nodes whose DPIDs (Identifier of node 10:

10

15

20

25

30

35

40

45

50

55

60

65

8

Datapath Identifiers) are 1-3 and the verification information
associated with the processing rules (The fourth to sixth
entries from the top indicate the similar contents).

When a packet that matches the matching key “A” is
received, the node whose DPID is 1 (for example, node #1
in FIG. 3) performs the processing indicated by the first
entry from the top. That is, the node adds a header, which
includes verification information “CA”, to the packet and
outputs the packet from the ninth port according to the
Actions field (Actions). Similarly, when a packet that
matches the matching key “A” is received from the node
whose DPID is 1 (for example, node #1 in FIG. 3), the node
whose DPID is 2 (for example, node #2 in FIG. 3) outputs
the packet from the sixth port. When a packet that matches
the matching key “A” is received from the node whose
DPID is 2 (for example, node #2 in FIG. 3), the node whose
DPID is 3 (for example, node #3 in FIG. 3) removes the
header, which includes the verification information “CA”,
from the packet and outputs the packet from the first port. As
a result of the above processing, the forwarding path is
controlled in such a way that the verification information
“CA” is added to a packet that matches the matching key
“A” and the packet is forwarded via the specified path,
during which the verification information “CA” is used for
matching. In the actual flow entry DB 21, each of the
matching keys “A”, “B”, and “X” shown in FIG. 5 is
composed of a rule (FlowKey; a wildcard may be used) with
which the header of a received packet, such as that shown in
FIG. 30, is compared.

In particular, Section 5.1 of the Openflow Switch Speci-
fication (Non-Patent Document 2), describes a header as
follows:

Each OpenFlow message begins with the OpenFlow
header:

/* Header on all OpenFlow packets. */

struct ofp_header {

uint8_t version; /* OFP_VERSION. */

uint8_t type; /* One of the OFPT_constants. */

uint16_t length; /* Length including this ofp_header. */

uint32_t xid; /* Transaction id associated with this packet.
Replies use the same id as was in the request
to facilitate pairing. */ }; OFP_ASSERT (sizeof(struct
ofp_header) ==8);

The version specifies the OpenFlow protocol version
being used. During the current draft phase of the OpenFlow
Protocol, the most significant bit will be set to indicate an
experimental version and the lower bits will indicate a
revision number. The current version is 0x01 . The final
version for a Type 0 switch will be 0x00. The length field
indicates the total length of the message, so no additional
framing is used to distinguish one frame from the next. The
type can have the following values:

enum ofp_type {

/* Immutable messages. */

OFPT_HELLO, /* Symmetric message */

OFPT_ERROR, /* Symmetric message */

OFPT_ECHO_REQUEST, /* Symmetric message */

OFPT_ECHO_REPLY, /* Symmetric message */

OFPT_VENDOR, /* Symmetric message */

/* Switch configuration messages. */

OFPT_FEATURES_REQUEST, /* Controller/switch
message */

OFPT_FEATURES_REPLY, /* Controller/switch mes-
sage */

OFPT_GET_CONFIG_REQUEST, /* Controller/switch
message */

US 9,426,061 B2

9

OFPT_GET_CONFIG_REPLY,

message */

OFPT_SET_CONFIG, /* Controller/switch message */

/* Asynchronous messages. */

OFPT_PACKET_IN, /* Async message */

OFPT_FLOW_REMOVED, /* Async message */

OFPT_PORT_STATUS, /* Async message */

/* Controller command messages. */

OFPT_PACKET_OUT, /* Controller/switch message */

OFPT_FLOW_MOD, /* Controller/switch message */

OFPT_PORT_MOD, /* Controller/switch message */

/* Statistics messages. */

OFPT_STATS_REQUEST, /* Controller/switch message

*/

OFPT_STATS_REPLY, /* Controller/switch message */

/* Barrier messages. */

OFPT_BARRIER_REQUEST, /* Controller/switch mes-

sage */

OFPT_BARRIER_REPLY, /* Controller/switch message

*/

/* Queue Configuration messages. */

OFPT_QUEUE_GET_CONFIG_REQUEST, /* Control-

ler/switch message */

OFPT_QUEUE_GET_CONFIG_REPLY /* Controller/

switch message */ };

FIG. 6 is a diagram schematically showing the informa-
tion (verification information) held in the verification infor-
mation DB 27. As shown in FIG. 6, the verification infor-
mation DB 27 stores the correspondence between the
matching keys “A”, “B”, . . ., “X” and the verification
information “CA”, “CB”, . . . “CX”. The verification infor-
mation generation unit 28 generates verification information
corresponding to a processing rule (flow entry) in response
to a request from the flow entry management unit 24, and
registers the generated verification information in the veri-
fication information DB 27. Such verification information
can be generated by a predetermined function (hash func-
tion, etc.), which uses a matching rule (hereinafter called
“matching key™) or other information as the argument, in
such a way that the verification information is unique at least
among multiple processing rules each corresponding to
multiple matching rules that conforms to a received packet,
that is, in such a way that the same verification information
is not assigned at least to multiple processing rules. Statis-
tically unique verification information may also be gener-
ated using random numbers (An example will be described
later in detail). The verification information DB 27, provided
to prevent the duplication of verification information among
multiple processing rules (flow entries) that may conflict
with each other, need not always have the format shown in
FIG. 6. In addition, the verification information DB 27 may
be omitted by avoiding the duplication of verification infor-
mation stochastically or statistically.

Note that, if a processing rule (flow entry) that the control
device (controller) 20 instructs the node 10 to add or update,
as well as verification information associated with the pro-
cessing rule, need not be held, the flow entry DB 21 may be
omitted. Similarly, if verification information generated in
association with a processing rule need not be held, the
verification information DB 27 may be omitted. In addition,
another configuration is also possible in which the flow entry
DB 21 and/or the verification information DB 27 is provided
in an external server separately.

The control device (controller) 20 described above may
be implemented by adding at least the following two to the
OpenFlow controller described in Non-Patent Documents 1
and 2. One is the verification information generation unit 28,

/* Controller/switch

15

20

25

30

35

40

45

55

60

65

10

and the other is the function to set a processing rule (flow
entry) and the verification information associated with the
processing rule in the node 10.

In particular, Section 4.6 of the Openflow Switch Speci-
fication (Non-Patent Document 2), describes Flow Table
Modification Messages as follows:

Flow table modification messages can have the following
types:
enum ofp_flow_mod_command {

OFPFC_ADD, /* New flow. */

OFPFC_MODIFY, /* Modify all matching flows. */

OFPFC_MODIFY_STRICT, /* Modify entry strictly
matching wildcards */

OFPFC_DELETE, /* Delete all matching flows. */

OFPFC_DELETE_STRICT /* Strictly match wildcards
and priority. */ };

For ADD requests with the OFPFF_CHECK_OVERLAP
flag set, the switch must first check for any overlapping flow
entries. Two flow entries overlap if a single packet may
match both, and both entries have the same priority. If an
overlap conflict exists between an existing flow entry and
the ADD request, the switch must refuse the addition and
respond with an ofp_error_msg with OFPET_FLOW_
MOD_FAILED type and OFPFMFC_OVERLAP code.

For valid (non-overlapping) ADD requests, or those with
no overlap checking, the switch must insert the flow entry at
the lowest numbered table for which the switch supports all
wildcards set in the flow_match struct, and for which the
priority would be observed during the matching process. If
a flow entry with identical header fields and priority already
resides in any table, then that entry, including its counters,
must be removed, and the new flow entry added.

If a switch cannot find any table in which to add the
incoming flow entry, the switch should send an ofp_er-
ror_msg with OFPET_FLOW_MOD_FAILED type and
OFPFMFC_ALL_TABLES_FULL code.

If the action list in a flow mod message references a port
that will never be valid on a switch, the switch must return
an ofp_error_msg with OFPET_BAD_ACTION type and
OFPBAC_BAD_OUT_PORT code. If the referenced port
may be valid in the future, e.g. when a linecard is added to
a chassis switch, or a port is dynamically added to a software
switch, the switch may either silently drop packets sent to
the referenced port, or immediately return an OFP-
BAC_BAD_OUT_PORT error and refuse the flow mod.

For MODIFY requests, if a flow entry with identical
header fields does not current reside in any table, the
MODIFY acts like an ADD, and the new flow entry must be
inserted with zeroed counters. Otherwise, the actions field is
changed on the existing entry and its counters and idle time
fields are left unchanged.

For DELETE requests, if no flow entry matches, no error
is recorded, and no flow table modification occurs. If flow
entries match, and must be deleted, then each normal entry
with the OFPFF_SEND_FLOW_REM flag set should gen-
erate a flow removed message. Deleted emergency flow
entries generate no flow removed messages.

MODIFY and DELETE flow mod commands have cor-
responding STRICT versions. Without STRICT appended,
the wildcards are active and all flows that match the descrip-
tion are modified or removed. If STRICT is appended, all
fields, including the wildcards and priority, are strictly
matched against the entry, and only an identical flow is
modified or removed. For example, if a message to remove
entries is sent that has all the wildcard flags set, the DELETE
command would delete all flows from all tables, while the

US 9,426,061 B2

11

DELETE STRICT command would only delete a rule that
applies to all packets at the specified priority.

For non-strict MODIFY and DELETE commands that
contain wildcards, a match will occur when a flow entry
exactly matches or is more specific than the description in
the flow mod command. For example, if a DELETE com-
mand says to delete all flows with a destination port of 80,
then a flow entry that is all wildcards will not be deleted.
However, a DELETE command that is all wildcards will
delete an entry that matches all port 80 traffic. This same
interpretation of mixed wildcard and exact header fields also
applies to individual and aggregate flows stats.

DELETE and DELETE_STRICT commands can be
optionally filtered by output port. If the out_port field
contains a value other than OFPP_NONE, it introduces a
constraint when matching. This constraint is that the rule
must contain an output action directed at that port. This field
is ignored by ADD, MODIFY, and MODIFY_STRICT
messages.

Emergency flow mod messages must have timeout values
set to zero. Otherwise, the switch must refuse the addition
and respond with an ofp_error_msg with OFPET_
FLOW_MOD_ FAILED type and OFPFMFC_BAD_
EMERG_TIMEOUT code.

If a switch cannot process the action list for any flow mod
message in the order specified, it MUST immediately return
an OFPET_FLOW_MOD_FAILED : OFPFMFC_UNSUP-
PORTED error and reject the flow.

FIG. 7 is a diagram showing the detailed configuration of
the node 10. Referring to FIG. 7, the node 10 comprises a
control device communication unit 11 that communicates
with the control device (controller) 20, a flow table man-
agement unit 12 that manages a flow table 13, a packet buffer
14, and a forwarding processing unit 15. Note that the node
10 need not always comprise the packet buffer 14.

The forwarding processing unit 15 comprises a table
search unit 153 and an action execution unit 154. The table
search unit 153 includes a verification information matching
unit 152 that compares the verification information associ-
ated with a processing rule (flow entry) with the verification
information added to a received packet to determine if they
match. The table search unit 153 searches the flow table 13
for a processing rule (flow entry), which has a matching key
that conforms to a received packet and whose verification
information matches that of the received packet, and outputs
the processing contents (action) to the action execution unit
154. The action execution unit 154 executes the processing
contents (action) output from the table search unit 153.

The node 10 described above may be implemented by
adding the verification information matching unit 152 to the
OpenFlow switch and by configuring the flow table 13 so
that verification information can be held in association with
a processing rule (flow entry). The table (flow entry) search
unit 153, which includes the verification information match-
ing unit 152, of the node 10 may be configured by a program
executed by a computer configuring the node 10.

FIG. 8 is a diagram schematically showing the informa-
tion (flow entry and verification information) held in the
flow table 13 of a node in FIG. 5 (node #2 in FIG. 3) whose
DPID is 2. As shown in FIG. 8, the flow table 13 includes
the flow entries and verification information that are the
same as those of the entries in the flow entry DB 21 in FIG.
5 with the corresponding DPID. For each of the nodes in
FIG. 5 whose DPID is 1 or 3 (nodes #1 or #3), the flow table
13 includes the flow entries and verification information
corresponding to each DPID in the same way.

20

25

40

45

55

12

FIG. 9 is a diagram showing the configuration of a
verification-information-added packet created by the node
10 based on the action (Set Header including “CA”; see the
action (Actions) of the node with DPID=1 in FIG. 5) that is
set by the control device (controller) 20. In the example in
FIG. 9, a verification-information-added packet 32 has the
configuration in which a verification-information-added
additional header 33, which includes the verification infor-
mation, is added to the start of a user packet 31.

FIG. 10 is a diagram showing an example of the configu-
ration of the verification-information-added additional
header 33. In the example in FIG. 10, the verification-
information-added additional header 33 has the configura-
tion in which the verification information is added to the
MAC destination address (MAC DA), MAC source address
(MAC SA), higher-level protocol type (Ether Type), and
total header length (Total Length). In the example in FIG.
10, the value (f(matching key, rand)) calculated by a pre-
determined function (hash function, etc.) with the matching
key and a random number as the argument is used as the
verification information.

Next, the following describes the operation of the control
device (controller) 20 and the node 10 described above. FIG.
11 is a flowchart showing the operation of the control device
(controller) 20. Referring to FIG. 11, when an inquiry
(processing rule creation request; see step S111 in FIG. 12)
is received from the node 10 (step S001; Packet-In), the
control device (controller) 20 checks if the inquiry packet
includes verification information (step S002). If the inquiry
packet includes verification information (Yes in step S002),
the processing rule corresponding to the packet is already
created and so the control device (controller) 20 retrieves the
processing rule corresponding to the packet and the verifi-
cation information associated with the processing rule from
the flow entry DB 21 (step S012) and passes control to step
S008.

On the other hand, if the inquiry packet does not include
verification information (No in step S002), the control
device (controller) 20 acquires the network topology infor-
mation built by the topology management unit 22 and
calculates the forwarding path of the packet (step S003).

Except when it is determined from the result of the packet
forwarding path calculation that the packet cannot be for-
warded because the forwarding path cannot be created or
because a node on the path has failed (No in step S004), the
control device (controller) 20 calculates an action corre-
sponding to the calculated forwarding path (step S005).
Next, the control device (controller) 20 generates verifica-
tion information that is associated with the processing rule
(flow entry) applied to each of the nodes 10 on the path (step
S006). In addition, the control device (controller) 20 gen-
erates a processing rule (flow entry) that is applied to each
of'the nodes 10 on the path wherein the processing rule (flow
entry) includes the matching key for identifying the flow, to
which the inquiry packet belongs, and the action (step
S007).

When the acquisition or generation of the processing rule
(flow entry) and the verification information is completed,
the control device (controller) 20 generates a setting instruc-
tion (Flow Mod(Add)) for setting the generated processing
rule (flow entry) and the verification information (step S008)
and transmits the setting instruction (Flow Mod(Add)) for
setting the processing rule (flow entry) and the verification
information to the nodes 10 on the packet forwarding path
created by the processing rule (flow entry) (step S009).

After that, if the node 10 has not buffered the packet (No
in step S010), the control device (controller) 20 transmits a

US 9,426,061 B2

13

packet output instruction (Packet-Out) (step S011). This
packet output instruction is carried out by specifying the
packet to be output (packet received by Packet-In in step
S001) and the action to be executed for the packet (addition
of verification information and output packet from the
specified port) or by specifying the packet to be output
(packet received by Packet-In in step S001) and the action
to be executed for the packet (search through the flow table).
Note that, if the node 10 has buffered the packet (Yes in step
S010), the control device (controller) 20 can cause the node
10 to output the packet as will be described later and,
therefore, the control device (controller) 20 omits this pro-
cessing.

FIG. 12 is a flowchart showing the operation of the node
10. Referring to FIG. 12, when a packet is received from the
host or another node 10 (step S101), the node 10 searches the
flow table 13 for a processing rule (flow entry) having the
matching key that conforms to the received packet (step
S102).

If a processing rule (flow entry) is extracted in step S102
(Yes in step S103), the node 10 checks if the received packet
includes verification information (step S104). In this exem-
plary embodiment, the node 10 checks if the received packet
has an additional header to see if the verification information
is included.

If the received packet does not include verification infor-
mation, the node 10 executes the action described in the
extracted processing rule (flow entry) (step S107).

On the other hand, if it is determined in step S104 that the
received packet includes verification information, the node
10 compares the verification information, included in the
received packet, with the verification information associated
with the extracted processing rule (flow entry) (step S105).

If the two pieces of verification information match, the
node 10 executes the action described in the extracted
processing rule (flow entry) (step S107). That is, to execute
an action for a packet that includes verification information,
it is required that a matching processing rule (flow entry) be
found during the search using a matching key and that the
verification information associated with the processing rule
(flow entry) match that included in the received packet.

On the other hand, if a processing rule (flow entry) that
conforms to the received packet is not found in step S103 or
if a processing rule (flow entry) that conforms to the
received packet is found but the two pieces of verification
information do not match, the node 10 passes control to step
S111 without executing the action described in the extracted
processing rule (flow entry) and transmits an inquiry to the
control device (controller) 20 (a request to create and
transmit a processing rule (flow entry) and verification
information corresponding to the received packet).

In step S111, the node 10 saves the received packet in the
packet buffer 14 and, at the same time, transmits the received
packet to the control device (controller) 20 to request it to
create a processing rule and verification information. After
that, in response to this request, the control device (control-
ler) 20 creates and sets a processing rule and verification
information according to the procedure shown in FIG. 11.

When the setting instruction (Flow Mod(ADD)) to set a
processing rule (flow entry) and verification information is
received from the control device (controller) 20, the node 10
sets the processing rule (flow entry) and the verification
information, associated with the processing rule, in its own
flow table 13 according to Flow Mod(Add) (step S112).

Next, the node 10 checks if the received packet is saved
in the packet buffer 14 (step S113). If the received packet is
saved (Yes in step S113), the node 10 reads the received

10

15

20

25

30

35

40

45

50

55

60

65

14

packet (step S114) and executes the processing contents
(action; addition of verification information and output of
the received packet from the specified port) defined by the
processing rule (flow entry) that has been set as described
above (step S107). This causes the received packet to be
forwarded to the next-hop node.

On the other hand, if the node 10 does not hold the user
packet, for example, when the node 10 does not have the
packet buffer 14 (No in step S113), the node 10 receives the
packet output instruction (Packet-Out) from the control
device (controller) 20 (step S116).

If the packet buffer 14 is provided, the node 10 that has
received the packet output instruction (Packet-Out) checks if
the packet is saved in the packet buffer 14 (step S117). If the
packet is saved (Yes in step S117), the node 10 reads the
packet (step S118) and executes the processing contents
(action; in this case, addition of verification information to
the received packet, output of the received packet from the
specified port, or search through the flow table) received
with the packet output instruction (Packet-Out) (step S107).
If the packet is not saved (No in step S117), the node 10
executes the processing contents (action; in this case, addi-
tion of verification information to the packet, and output of
the packet from the specified port, or search through the flow
table) received with the packet output instruction (Packet-
Out) for the packet received with the packet output instruc-
tion (Packet-Out) (step S107). This causes the received
packet to be forwarded to the next-hop node.

FIG. 13 and FIG. 14 are a reference diagram and a
sequence diagram showing a sequence of flow from a point
of time at which node #1, which has received a packet to be
transmitted from host (A) to host (B), transmits an inquiry
(a request to create a processing rule and verification infor-
mation) to the control device (controller) 20 until a point of
time at which the packet is delivered to host (B).

As shown in FIG. 13 and FIG. 14, when host (A) transmits
a user packet, which is to be transmitted to host (B), to node
#1 (ST1; User Packet in FIG. 13 and FIG. 14), node #1
searches (for flow entry) in the flow table 13 and, as a result,
determines that the packet is an unknown packet that has no
processing rule (flow entry) matching the received packet
(No in step S103 in FIG. 12). Node #1 transmits an inquiry
(a request to create a processing rule (flow entry) and
verification information) to the control device (controller) 20
(ST2; Packet-In in FIG. 13 and FIG. 14).

When the inquiry (a request to create a processing rule
(flow entry) and verification information) is received, the
control device (controller) 20 creates a processing rule (flow
entry) and verification information (CA) to be set in the
nodes #1-#3 on the forwarding path of this packet according
to the flowchart in FIG. 11 and transmits them to nodes
#1-#3 (ST3-1 to ST5-1; Flow Mod(Add) w/CA in FIG. 13
and FIG. 14).

Each of nodes #1-#3 adds the processing rule (flow entry)
and the verification information (CA), transmitted from the
control device (controller) 20, to the flow table 13 of its own
device and, if the buffer ID is added, executes the action for
the packet (ST3-2 to ST5-2 in FIG. 13 and FIG. 14). In the
description below, assume that the processing rule (flow
entry) and the verification information (CA) transmitted in
ST4-1 in FIG. 13 and FIG. 14 do not reach node #2 for some
reason and, therefore, the processing rule (flow entry) and
the verification information (CA) are not added to the flow
table 13 of node #2.

And, then, node #1 generates a user packet, to which an
additional header including the verification information
(CA) is added (see FIG. 9), and outputs the generated packet

US 9,426,061 B2

15

from the specified port (port connected to node #2) accord-
ing to the action (See the action (Actions) in the entry in
FIG. 5 corresponding to DPID=1, matching key=A, and
verification information=CA) included in the processing
rule received in ST3-1 (ST6 in FIG. 13 and FIG. 14).

When the user packet, to which the additional header
including the verification information (CA) is added, is
received, node #2 conducts search in the flow table 13 and,
as a result, determines that there is no processing rule (flow
entry) matching the received packet or that there is a
processing rule (flow entry) matching the received packet
but the verification information does not match that of the
received packet (No in step S103 or No in step 106 in FIG.
12). Node #2 transmits an inquiry (a request to create a
processing rule (flow entry) and verification information) to
the control device (controller) 20 (ST8; Packet-In in FIG. 13
and FIG. 14).

When the inquiry (a request to create a processing rule
(flow entry) and verification information) is received, the
control device (controller) 20 acquires a processing rule
(flow entry) and verification information (CA), which are to
be set in node #2 on a path of the packet (step S012 in FIG.
11), and transmits them to node #2 according to the flow-
chart in FIG. 11 (ST9; Flow Mod(Add) w/CA in FIG. 13 and
FIG. 14).

Node #2 adds the processing rule (flow entry) and the
verification information, transmitted from the control device
(controller) 20, to the flow table 13 of its own device and, if
the buffer ID is added, executes the action (ST10 in FIG. 13
and FIG. 14).

And, then, node #2 outputs the user packet, to which the
additional header including the verification information
(CA) is added, from the specified port (port connected to
node #3) according to the action (See the action (Actions) in
the entry in FIG. 5 corresponding to DPID=2, matching
key=A, and verification information=CA) in the processing
rule received in ST10 (ST11 in FIG. 13 and FIG. 14).

When the user packet, to which the additional header
including the verification information (CA) is added, is
received, node #3 conducts search in the flow table 13 and,
as a result, determines that one of the processing rules (flow
entries) conforms to the received packet and the verification
information also matches that of the received packet (Yes in
step S103 and Yes in step 106 in FIG. 12), and executes the
action defined in the extracted and confirmed processing rule
(flow entry) (ST12 in FIG. 13 and FIG. 14).

More specifically, node #3 removes the additional header
including the verification information (CA) from the user
packet and outputs the packet from the specified port (port
connected to host (B)) according to the action (See the action
(Actions) in the entry in FIG. 5 corresponding to DPID=3,
matching key=A, and verification information=CA) in the
processing rule (flow entry) extracted and confirmed in
ST12 (ST13 in FIG. 13 and FIG. 14).

As described above, an action is executed in this exem-
plary embodiment under the condition that not only the
matching key of a processing rule (flow entry) matches the
header information of a received packet but also the verifi-
cation information, separately generated by the control
device (controller) 20, matches that of the received packet.
Thus, this exemplary embodiment can avoid the condition,
described at the start of this specification, where an unin-
tended action specified in a processing rule (flow entry) is
executed.

In this exemplary embodiment, if it is determined in step
S104 that verification information is not included in a
received packet, an action is executed without comparing

20

25

30

40

45

50

16

the verification information, considering a packet to which
verification information need not be added. Instead of this,
it is also possible to always prevent the execution of an
action if verification information is not included in a
received packet.

(Second Exemplary Embodiment)

Next, the following describes a second exemplary
embodiment of the present invention in detail with reference
to the drawings. Although verification information is added
to a packet using an additional header that includes verifi-
cation information in the first exemplary embodiment of the
present invention described above, verification information
may also be included in a packet without using the additional
header. The following describes the second exemplary
embodiment in which verification information is included in
a packet without using an additional header. Because the
basic configuration of a node 10 and a control device
(controller) 20 in the second exemplary embodiment is
similar to that of the node 10 and control device (controller)
20 in the first exemplary embodiment, the following
describes the configuration with emphasis on the difference.

FIG. 15 is a diagram schematically showing the informa-
tion (flow entries) held in the flow entry DB 21 of the control
device (controller) 20 in this exemplary embodiment. This
exemplary embodiment differs from the first exemplary
embodiment in that the independent verification information
field is not included in the flow entry DB 21 but a matching
key, which includes verification information (CA), is stored
in the matching key field of a flow entry and in that the
processing for writing verification information into (or
restoring) the MAC DA field is defined as an action (more
strictly, replacement of MAC DA field with the value Dn'
(see FIG. 19) and restoration of the MAC DA field). In the
description below, the value of the original MAC DA field
is indicated as “Du” and the value of the MAC DA field
converted to include verification information (CA) is indi-
cated as “Dn".

For example, when a packet that matches the matching
key “A” is received, the node in FIG. 15 whose DPID is 1
(for example, node #1 in FIG. 3) sets the value D1', which
includes verification information (CA), in the MAC DA field
of'the packet according to the action field (Actions) and then
outputs the packet from the ninth port. When the packet
(packet that matches the matching key A") whose MAC DA
field includes the verification information (CA) is received
from the node whose DPID is 1 (for example, node #1 in
FIG. 3), the node whose DPID is 2 (for example, node #2 in
FIG. 3) outputs the packet from the sixth port. When the
packet (packet that matches the matching key A') whose
MAC DA field includes the verification information (CA) is
received from the node whose DPID is 2 (for example, node
#2 in FIG. 3), the node whose DPID is 3 (for example, node
#3 in FIG. 3) restores the MAC DA field to the same
contents (D1) as those of MAC DA of the original received
packet and then outputs the packet from the first port. As a
result of the above processing, the forwarding path is
controlled in such a way that the verification information
“CA” is added by the first-hop node on the forwarding path
and the packet is forwarded via the specified path, during
which the verification information “CA” is used for match-
ing.

FIG. 16 is a diagram schematically showing the informa-
tion (verification information) held in the verification infor-
mation DB 27 of the control device (controller) 20 in this
exemplary embodiment. The information differs from that in
the first exemplary embodiment in that the contents of the
original MAC DA field (corresponding to D1, D2, and DX

US 9,426,061 B2

17
in FIG. 15) for restoring the MAC DA field to the same
contents as those of MAC DA of the original received
packet, as well as the node number of the last hop for
performing the restoration processing, are added.

FIG. 17 is a diagram showing the detailed configuration
of a node 104 in this exemplary embodiment. The configu-
ration differs from that in FIG. 7, which shows the configu-
ration of the node 10 in the first exemplary embodiment, in
that a verification information matching unit 152a, a table
search unit 1534, and a forwarding processing unit 154
replace the corresponding units, because the verification
information, as well as the comparison operation of the
verification information matching unit 1524, differs between
the two exemplary embodiments The details will be
described later).

FIG. 18 is a diagram schematically showing the informa-
tion (flow entries) held in the flow table 13 of the node in
FIG. 15 whose DPID is 2 (node #2 in FIG. 3). As shown in
FIG. 18, the flow entries of the corresponding DPIDs,
retrieved from the flow entry DB 21 in FIG. 15, are set in the
flow table 13. In the nodes whose DPID is 1 and 3 in FIG.
15 (nodes #1 and #3 in FIG. 3), the flow entries correspond-
ing to each of the DPIDs are similarly set.

FIG. 19 is a diagram showing the configuration of a
packet rewritten by the node 10 based on an action (Set
MAC DA to D1'; see the action (Actions) of the node whose
node is DPID=1 in FIG. 15) that is set by the control device
(controller) 20. In the example in FIG. 19, a verification-
information-added packet 32a has the configuration in
which the 48-bit information shown in the bottom of FIG. 19
is written in the MAC DA field of a user packet 31. Although
the 8-bit fixed data indicating that verification information is
included, the function f; (DPID of last-hop node, original
MAC DA), and the function f, (matching key, random
number) are written in the example in FIG. 19, this con-
figuration is exemplary only. The field for storing verifica-
tion information, the contents of verification information,
and the functions for reducing the original data may be
changed as necessary.

Next, the following describes the operation of this exem-
plary embodiment. FIG. 20 is a flowchart showing the
operation of the control device (controller) in the second
exemplary embodiment of the present invention. The opera-
tion shown in this figure differs from the operation in FIG.
11, which shows the operation of the control device (con-
troller) in the first exemplary embodiment, in that, when the
control device checks if verification information is included
in an inquiry packet in step S002a, the control device
checks, not the additional header, but whether or not the
above-described fixed data (see FIG. 19) is written in MAC
DA. The other steps are similar to those in the first exem-
plary embodiment and therefore the description is omitted
here.

FIG. 21 is a flowchart showing the operation of the node
10a in the second exemplary embodiment of the present
invention. The operation differs from the operation in FIG.
12, which shows the operation of the node 10 in the first
exemplary embodiment, in that, when the node checks if
verification information is included in a received packet in
step S104q, the node checks, not the additional header, but
whether or not the above-described fixed data (see FIG. 19)
is written in MAC DA and in that the last-hop node does not
delete the additional header but restores the original MAC
DA field according to the action followed by forwarding the
packet. The other steps are similar to those in the first
exemplary embodiment and therefore the description is
omitted here.

10

15

20

25

30

35

40

45

50

55

60

65

18

As described above, the present invention may be imple-
mented in the mode in which verification information is
included in a particular field of an existing packet.

(Third Exemplary Embodiment)

Next, the following describes a third exemplary embodi-
ment of the present invention in detail with reference to the
drawings. Although the same verification information is
stored in the nodes by associating the verification informa-
tion with a flow entry of the flow table in the first exemplary
embodiment of the present invention, another configuration
is also possible in which the nodes use different verification
information for comparison. The following describes the
third exemplary embodiment in which the nodes use differ-
ent verification information for comparison. Because the
basic configuration of a node 10 and a control device
(controller) 20 in the third exemplary embodiment is similar
to that of the node 10 and control device (controller) 20 in
the first exemplary embodiment, the following describes the
configuration with emphasis on the difference.

FIG. 22 is a diagram schematically showing the informa-
tion (flow entry and verification information) held in the
flow entry DB 21 of the control device (controller) 20 in this
exemplary embodiment. The difference from the first exem-
plary embodiment is that the generation processing of veri-
fication information (step S006 in FIG. 11) for the nodes is
executed, once for each node, and that, instead of providing
an independent verification information field in the flow
entry DB 21, the processing is added to the action field for
adding an additional header that includes different verifica-
tion information. (A header that includes different verifica-
tion information is added to each node and therefore the
verification information associated with a flow entry is
described in the flow entry. This means that the verification
information field is not necessary because the correspon-
dence between verification information and flow entries
need not be maintained independent y).

For example, when a packet that matches the matching
key “A1” is received, the node in FIG. 22 whose DPID is 1
(for example, node #1 in FIG. 3) adds the additional header,
which stores the verification information (C2A), to the
received packet and outputs the packet from the ninth port
according to the action field (Actions). Similarly, when the
packet (packet that matches the matching key A2), to which
the additional header storing the verification information
(C2A) is added, is received from the node whose DPID is 1
(for example, node #1 in FIG. 3), the node whose DPID is
2 (for example, node #2 in FIG. 3) rewrites the verification
information (C2A) of the additional header to the verifica-
tion information (C3A) and then outputs the packet from the
sixth port. And, when the packet (packet that matches the
matching key A3), to which the additional header storing the
verification information (C3A) is added, is received from the
node whose DPID is 2 (for example, node #2 in FIG. 3), the
node whose DPID is 3 (for example, node #3 in FIG. 3)
removes the additional header from the packet and then
outputs the packet from the first port. As a result of the above
processing, the forwarding path on the specified path is
controlled in such a way that the packet is forwarded
sequentially beginning at the first-hop node on the forward-
ing path, during which the verification information is rewrit-
ten and the verification information is used for matching.

FIG. 23 is a diagram schematically showing the informa-
tion (verification information) held in the verification infor-
mation DB 27 of the control device (controller) 20 in this
exemplary embodiment. The difference from the first exem-
plary embodiment is that the DPID field is added and that the
relation between a matching key and verification informa-

US 9,426,061 B2

19

tion is stored for each node. Note that this configuration is
exemplary only and that the information held in the verifi-
cation information DB 27 may be changed as necessary
depending on the function for generating verification infor-
mation.

FIG. 24 is a diagram schematically showing the informa-
tion (flow entries and verification information) held in the
flow table 13 of the node in FIG. 22 whose DPID is 2 (node
#2 in FIG. 3). As shown in FIG. 24, the flow entries and the
verification information of the corresponding DPIDs are
retrieved from the flow entry DB 21 in FIG. 22 and set in the
flow table 13. For each of the nodes in F1G. 22 whose DPIDs
are 1 and 3 (nodes #1 and #3 in FIG. 3), the flow entries and
the verification information corresponding to the DPID are
set respectively.

This exemplary embodiment differs from the first exem-
plary embodiment only in that the control device generates
verification information for each node and that the actions
executed in the nodes differ. The basic operation is the same
as that of the first exemplary embodiment and therefore the
description is omitted (see FIG. 11 and FIG. 12).

This exemplary embodiment, in which each node rewrites
the verification information according to the action included
in a processing rule as described above, differs from the first
exemplary embodiment in that the flow entries with different
matching keys may be set in the nodes on the path for one
communication flow.

(Fourth Exemplary Embodiment)

Next, the following describes a fourth exemplary embodi-
ment of the present invention in detail with reference to the
drawings. In the fourth exemplary embodiment of the pres-
ent invention that is a combination of the second exemplary
embodiment and the third exemplary embodiment of the
present invention, the additional header is not used and each
node uses different verification information for comparison.
Because the basic configuration of a node 10 and a control
device (controller) 20 in the fourth exemplary embodiment
is similar to that of the node 10 and control device (con-
troller) 20 in the first to third exemplary embodiments, the
following describes the configuration with emphasis on the
difference.

FIG. 25 is a diagram schematically showing the informa-
tion (flow entries) held in the flow entry DB 21 of the control
device (controller) 20 in this exemplary embodiment. This
exemplary embodiment differs from the third exemplary
embodiment in that the action field includes, not the pro-
cessing for adding an additional header including different
verification information, but the processing for rewriting the
value of the MAC DA field to the value including the
verification information on each node and for restoring the
value at the last-hop.

For example, when a packet that matches the matching
key “A” is received, the node in FIG. 25 whose DPID is 1
(for example, node #1 in FIG. 3) sets the value D1', which
includes the verification information (C2A), in the MAC DA
field of the packet and then outputs the packet from the ninth
port according to the action field (Actions). Similarly, when
the packet (packet that matches the matching key A') whose
MAC DA field includes the verification information (C2A)
is received from the node whose DPID is 1 (for example,
node #1 in FIG. 3), the node whose DPID is 2 (for example,
node #2 in FIG. 3) rewrites the MAC DA field of the packet
to the value D1", which includes the verification information
(C3A), and then outputs the packet from the sixth port.
When the packet (packet that matches the matching key A")
whose MAC DA field includes the verification information
(C3A) is received from the node whose DPID is 2 (for

10

15

20

25

30

35

40

45

50

55

60

65

20

example, node #2 in FIG. 3), the node whose DPID is 3 (for
example, node #3 in FIG. 3) restores the MAC DA field to
the same contents (D1) as those of MAC DA of the original
received packet and then outputs the packet from the first
port. As a result of the above processing, the forwarding path
on the specified path is controlled in such a way that the
verification information is sequentially rewritten and the
verification information is used for matching in the first-hop
node of the forwarding path.

FIG. 26 is a diagram schematically showing the informa-
tion (verification information) held in the verification infor-
mation DB 27 of the control device (controller) 20 in this
exemplary embodiment. The information differs from that in
the third exemplary embodiment in that the contents of the
original MAC DA field for restoring the MAC DA field to
the same contents of MAC DA of the original received
packet (corresponds to D1, D2, and DX in FIG. 25) and the
node numbers of last hops that execute this restoration
processing are added. Note that this configuration is exem-
plary only and that the information held in the verification
information DB 27 may be changed as necessary depending
on the function for generating verification information.

FIG. 27 is a diagram schematically showing the informa-
tion (flow entries) held in the flow table 13 of a node in FIG.
25 whose DPID is 2 (node #2 in FIG. 3). As shown in FIG.
27, the flow entries of the corresponding DPIDs are retrieved
from the flow entry DB 21 in FIG. 25 and set in the flow
table 13. For each of the nodes in FIG. 25 whose DPIDs are
1 and 3 (nodes #1 and #3 in FIG. 3), the flow entries
corresponding to the DPID are set respectively.

This exemplary embodiment differs from the first exem-
plary embodiment only in that the control device generates
verification information for each node and that the actions
executed in the nodes differ. The basic operation is the same
as that of the first exemplary embodiment and therefore the
description is omitted (see FIG. 11 and FIG. 12).

This exemplary embodiment, in which each node rewrites
the verification information according to the action included
in a processing rule as described above, differs from the
second exemplary embodiment in that the flow entries with
different matching keys may be set in the nodes on the path
for one communication flow.

(Fifth Exemplary Embodiment)

Next, the following describes a fifth exemplary embodi-
ment of the present invention in detail with reference to the
drawings. Although only one piece of verification informa-
tion is stored in the additional header in the third exemplary
embodiment of the present invention described above,
another configuration is also possible in which verification
information, which is used for comparison by the nodes on
the forwarding path, is stored in the additional header, one
for each node. In this configuration, when a packet to which
the additional header is added is received, a node identifies
the verification information to be referenced by the node for
use in the comparison operation. The following describes the
fifth exemplary embodiment in which multiple pieces of
verification information can be stored in the additional
header. Because the basic configuration of a node 10 and a
control device (controller) 20 in the fifth exemplary embodi-
ment is similar to that of the node 10 and control device
(controller) 20 in the third exemplary embodiment described
above, the following describes the configuration with
emphasis on the difference.

FIG. 28 is a diagram showing an example of a packet used
in the fifth exemplary embodiment of the present invention.
In the example in FIG. 28, a verification-information-added
packet 325 has the configuration in which a verification-

US 9,426,061 B2

21

information-added additional header 335, which includes
verification information, is added to the start of the user
packet 31.

FIG. 29 is a diagram showing an example of the configu-
ration of the verification-information-added additional
header 335 described above. In the example in FIG. 29, the
verification-information-added additional header 335 com-
prises a MAC destination address (MAC DA), a MAC
source address (MAC SA), a higher-protocol type (Ether
Type), a total header length (Total Length), and multiple sets
of a DPID and verification information. In the example in
FIG. 29, the value (f(matching key, rand)) calculated by a
predetermined function (hash function, etc.), which uses the
matching key of each node and a random number as the
argument, is used as verification information.

This exemplary embodiment differs from the first exem-
plary embodiment only in that the control device generates
verification information for each node and that each node
retrieves its own verification information using the DPID
and executes the comparison operation. The basic operation
is the same as that of the first exemplary embodiment and
therefore the description is omitted (see FIG. 11 and FIG.
12).

As described above, the present invention may be imple-
mented by the configuration in which an additional header,
which stores verification information on individual nodes, is
added. This exemplary embodiment has an advantage over
the third exemplary embodiment in that each node can omit
the processing for rewriting the verification information.

While the preferred exemplary embodiments of the pres-
ent invention have been described, it is to be understood that
the present invention is not limited to the exemplary
embodiments described above and that further modifica-
tions, replacements, and adjustments may be added within
the scope not departing from the basic technological concept
of the present invention. The control devices (controller) 20
and 20qg in the exemplary embodiments described above
may be implemented by a dedicated server, and the nodes
10, 10q, and 105 may be implemented by the OpenFlow
switch described above as well as by a router on an IP
network or an MPLS (Multi-Protocol Label Switching)
switch on an MPLS network. In addition, the present inven-
tion is applicable to a network where a server integrally
manages the nodes in the network.

In the fifth exemplary embodiment described above, the
node identifiers (DPID) are included in the additional header
to allow each node to identify the verification information to
be compared in the device. It is also possible to use the
method in which the verification information is used begin-
ning with the first or last verification information in the
additional header and the use-flag is set to indicate that the
verification information is already used or the method in
which each node sequentially deletes from the additional
header the verification information it uses for comparison.

Although the last-hop node removes the additional
header, or restores the MAC DA field, in the exemplary
embodiments described above, another configuration is also
possible in which the host performs this processing.

As the verification information described in the exem-
plary embodiments described above, the information gen-
erated by the controller to allow a flow entry to be identified
uniquely, such as Flow Cookie in Non-Patent Document 2,
may also be used.

Although the control device 20 comprises the verification
information generation unit 20 in the exemplary embodi-
ments described above, the configuration in which the
verification information generation unit is generated in each

10

15

20

25

30

35

40

45

50

55

60

65

22

node is also possible if each node 10 can create verification
information by establishing synchronization among nodes
10 or between the node 10 and the control device 20 or by
allocating the verification information generation function
and its arguments to each node 10.

Finally, the following summarizes the preferred modes of
the present invention.
(First Mode)
(See the communication system in the first aspect above)
(Second Mode)
The communication system as described in the first mode,
wherein

the identifier is used to verify a matching result between
the received packet and the processing rule, the matching
result based on the matching rule.
(Third Mode)
The communication system as described in the first or
second mode, wherein

the node searches for a processing rule corresponding to
a matching rule, which conforms to a received packet, by
comparing (matching) the received packet against the
matching rule and, if an identifier of the received packet
corresponds to an identifier associated with the processing
rule searched, performs processing for the received packet
according to the processing rule searched.
(Fourth Mode)
The communication system as described in the first or
second mode, wherein

the node searches for a processing rule associated with an
identifier corresponding to an identifier of a received packet
and, if a matching rule corresponding to the processing rule
conforms to the received packet, performs processing for the
received packet according to the processing rule searched.
(Fifth Mode)
The communication system as described in one of the first
to fourth modes, wherein

the identifier is unique at least among a plurality of
processing rules each corresponding to a plurality of match-
ing rules that conforms to a received packet.
(Sixth Mode)
The communication system as described in one of the first
to fourth modes, wherein

the identifier is unique statistically.
(Seventh Mode)
The communication system as described in one of the first
to sixth modes, wherein

the node determines whether or not a received packet
includes an identifier of the received packet by checking
whether or not an additional header, in which the identifier
is stored, is added to the received packet.
(Eighth Mode)
The communication system as described in one of the first
to sixth modes, wherein

the node determines whether or not a received packet
includes an identifier of the received packet by checking
whether or not an identifier is stored in a predetermined field
of the received packet.
(Ninth Mode)
The communication system as described in one of the first
to sixth modes and the eighth mode, wherein

the control device controls each the node in such a way
that a node located at a start of a packet forwarding path
replaces information in a predetermined field of a received
packet with information including an identifier, followed by
forwarding the packet; and

US 9,426,061 B2

23

a node located at an end of the forwarding path restores
the information in a predetermined field of the received
packet to contents before the replacement, followed by
forwarding the packet.

(Tenth Mode)
The communication system as described in one of the first
to ninth modes, wherein

the control device sets a different identifier in a processing
rule that is set in a node on a packet forwarding path and
controls each the node in such a way that a node on the
forwarding path sequentially rewrites an identifier of a
received packet to an identifier of a next-hop node.
(Eleventh Mode)

The communication system as described in one of the first
to seventh modes and the tenth mode, wherein

the control device controls each the node in such a way
that a node located at a start of a packet forwarding path adds
an additional header, which includes an identifier, to a
received packet followed by forwarding the packet and a
node located at the end of the forwarding path removes the
additional header, followed by forwarding the packet.
(Twelfth Mode)

The communication system as described in one of the
seventh mode and the eleventh mode, wherein

the additional header stores a plurality of identifiers each
used for determination in a node on a packet forwarding
path.

(Thirteenth Mode)

(See the Node in the Second Aspect Above)

(Fourteenth Mode)

(See the Control Device in the Third Aspect Above)
(Fifteenth mode)

(See the Communication Method in the Fourth Aspect
Above)

(Sixteenth mode)

(See the Communication Method in the Fifth Aspect Above)
(Seventeenth mode)

(See the Program in the Sixth Aspect Above)

(Eighteenth mode)

(See the Program in the Seventh Aspect Above)

The thirteenth to eighteenth modes described above may
be embodied into the second to twelfth modes in the same
way as the first mode described above.

The disclosures of Non-Patent Documents given above
are hereby incorporated by reference into this specification.
The exemplary embodiments may be changed and adjusted
in the scope of the entire disclosure (including claims) of the
present invention and based on the basic technological
concept. With the scope of the claims of the present inven-
tion, various disclosed elements may be combined and
selected in a variety of ways. That is, it is apparent that the
present invention includes various modifications and
changes that may be made by those skilled in the art
according to the entire disclosure, including claims, and
technological concepts thereof.

What is claimed is:

1. A communication system, comprising:

a node that processes a packet; and

a control device that notifies a processing rule and first
identifier for identifying said processing rule to said
node, the processing rule including a matching rule for
matching with information included in a packet and an
instruction for processing a packet that corresponds to
the matching rule,

10

15

20

25

30

35

40

45

50

55

65

24

wherein the node comprises:

a first unit which receives from the control device, the
processing rule and the first identifier for identifying
the processing rule; and

a second unit which determines whether to process a
received packet according to the instruction depend-
ing upon whether a second identifier attached to the
received packet corresponds to the first identifier
received from the control device.

2. The communication system as defined by claim 1,
wherein
the first and second identifiers are used to verify a
comparison result between the received packet and the
processing rule, the comparison being based on the
matching rule.
3. The communication system as defined by claim 1,
wherein
said node searches for a processing rule corresponding to

a matching rule which conforms to a received packet,

by comparing the received packet with the matching

rule and, in case where a second identifier of the
received packet corresponds to a first identifier associ-
ated with the processing rule searched, performs pro-
cessing for the received packet according to the pro-
cessing rule searched.

4. The communication system as defined by claim 1,

wherein

said node searches for a processing rule associated with a

first identifier corresponding to a second identifier of a

received packet and, in case where a matching rule

corresponding to the processing rule conforms to the
received packet, performs processing for the received
packet according to the processing rule searched.
5. The communication system as defined by claim 1,
wherein
the first and second identifiers are unique statistically or
unique at least among a plurality of processing rules
each corresponding to a plurality of matching rules that
corresponds to a received packet.
6. The communication system as defined by claim 1,
wherein
said node determines whether a received packet includes
a second identifier of the received packet by checking
whether an additional header, in which the second
identifier is stored, is added to the received packet.
7. The communication system as defined by claim 6,
wherein
the additional header stores a plurality of second identi-
fiers each used for determination in a node on a packet
forwarding path.
8. The communication system as defined by claim 1,
wherein
said node determines whether a received packet includes
a second identifier of the received packet by checking
whether a second identifier is stored in a predetermined
field of the received packet.
9. The communication system as defined by claim 1,
wherein
said control device controls each said node in such a way
that a node located at a start of a packet forwarding path

replaces information in a predetermined field of a

received packet with information including an identi-

fier, followed by forwarding the packet; and

a node located at an end of the forwarding path restores
the information in a predetermined field of the received
packet to contents before the replacement, followed by
forwarding the packet.

US 9,426,061 B2

25

10. The communication system as defined by claim 1,

wherein

said control device sets a different identifier in a process-
ing rule that is set in a node on a packet forwarding path
and controls each said node in such a way that a node
on the forwarding path sequentially rewrites an iden-
tifier of a received packet to an identifier of a next-hop
node.

11. The communication system as defined by claim 1,

wherein

said control device controls each said node in such a way
that a node located at a start of a packet forwarding path
adds an additional header, which includes an identifier,
to a received packet, followed by forwarding the
packet; and

a node located at an end of the forwarding path removes
the additional header, followed by forwarding the
packet.

12. The communication system as defined by claim 6,

wherein

the additional header stores a plurality of identifiers each
used for determination in a node on a packet forward-
ing path.

13. The communication system as defined by claim 1,

wherein

said control device controls each said node in such a way
that a node located at a start of a packet forwarding path
replaces information in a predetermined field of a
received packet with information including an second
identifier, followed by forwarding the packet; and

a node located at an end of the forwarding path restores
the information in a predetermined field of the received
packet to contents before the replacement, followed by
forwarding the packet.

14. The communication system as defined by claim 1,

wherein

said control device sets a different first identifier in a
processing rule that is set in a node on a packet
forwarding path and controls each said node in such a
way that a node on the forwarding path sequentially
rewrites a second identifier of a received packet to a
first identifier of a next-hop node.

15. The communication system as defined by claim 1,

wherein

said control device controls each said node in such a way
that a node located at a start of a packet forwarding path
adds an additional header, which includes a second
identifier, to a received packet, followed by forwarding
the packet; and

a node located at an end of the forwarding path removes
the additional header, followed by forwarding the
packet.

16. A node, comprising:

a first unit which receives from a control device, a
processing rule and first identifier for identifying said
processing rule, the processing rule including a match-
ing rule for matching with information included in a
packet and an instruction for processing a packet that
corresponds to the matching rule; and

a second unit which determines whether to process a
received packet according to the instruction depending
upon whether a second identifier attached to the
received packet corresponds to the first identifier
received from said control device.

10

15

20

25

30

35

40

45

50

55

60

65

26
17. The node as defined by claim 16, wherein
the first and second identifier are used to verify a com-
paring result between the received packet and the
processing rule, the comparing being result based on
the matching rule.
18. The node as defined by claim 16, wherein
said second unit searches for a processing rule corre-
sponding to a matching rule which conforms to a
received packet, by comparing the received packet with
the matching rule and, in case where a second identifier
of the received packet corresponds to a first identifier
associated with the processing rule searched, performs
processing for the received packet according to the
processing rule searched.
19. The node as defined by claim 16, wherein
said second unit searches for a processing rule associated
with a first identifier corresponding to a second iden-
tifier of a received packet and, in case where a matching
rule corresponding to the processing rule conforms to
the received packet, performs processing for the
received packet according to the processing rule
searched.
20. The node as defined by claim 16, wherein
the first and second identifier are unique statistically or
unique at least among a plurality of processing rules
each corresponding to a plurality of matching rules that
corresponds to a received packet.
21. The node as defined by claim 16, wherein
said node determines whether or not a received packet
includes a second identifier of the received packet by
checking whether or not an additional header, in which
the second identifier is stored, is added to the received
packet.
22. The node as defined by claim 16, wherein
said node determines whether or not a received packet
includes a second identifier of the received packet by
checking whether or not a second identifier is stored in
a predetermined field of the received packet.
23. A control device, comprising:
a first unit which generates a processing rule and first
identifier for identifying said processing rule, the pro-
cessing rule including a matching rule for matching
with information included in a packet and an instruc-
tion for processing a packet that corresponds to the
matching rule; and
a second unit which sends the processing rule and the first
identifier to the node, said node determining whether to
process a received packet according to the instruction
depending upon whether a second identifier attached to
the received packet corresponds to the first identifier.
24. A communication method, comprising:
in a communication system comprising a node that pro-
cesses a packet, and a control device that notifies a
processing rule and first identifier for identifying the
processing rule to the node:
in a first unit of the node, a receiving step for receiving
the processing rule and the first identifier from the
control device, the processing rule including a
matching rule for matching with information
included in a packet and an instruction for processing
a packet that corresponds to the matching rule; and

in a second unit of the node, a determining step for
determining whether to process a received packet
according to the instruction depending upon whether
a second identifier attached to the received packet
corresponds to the first identifier received from the
control device.

US 9,426,061 B2

27

25. A communication method, comprising:
in a communication system comprising a node that pro-
cesses a packet, and a control device that notifies a
processing rule and first identifier for identifying said
processing rule to said node:
in a first unit of the control device, a generating step for
generating the processing rule and the first identifier
for identifying the processing rule, the processing
rule including a matching rule for matching with
information included in a packet and an instruction
for processing a packet that corresponds to the
matching rule; and
in a second unit of the control device, a sending step for
sending the processing rule and the first identifier to
the node, the node determining whether to process a
received packet according to the instruction depend-
ing upon whether a second identifier attached to the
received packet corresponds to the first identifier.
26. A non-transitory computer-readable storage medium
storing a program causing a node provided in a communi-
cation system to process a received packet, to perform the
processing of:
in a communication system comprising a node that pro-
cesses a packet, and a control device that notifies a
processing rule and first identifier for identifying said
processing rule to said node:
in a first unit of the node, a receiving step for receiving
the processing rule and the first identifier from the
control device, the processing rule including a
matching rule for matching with information

10

15

20

25

28

included in a packet and an instruction for processing
a packet that corresponds to the matching rule; and

in a second unit of the node, a determining step for
determining whether to process a received packet
according to the instruction depending upon whether
a second identifier attached to the received packet
corresponds to the first identifier received from the
control device.

27. A non-transitory computer-readable storage medium
storing a program that causes a control device provided in a
communication system to control a node which processes a
received packet, to perform the processing of:

in a communication system comprising a node that pro-

cesses a packet, and a control device that notifies a

processing rule and first identifier for identifying said

processing rule to said node:

in a first unit of the control device, a generating step for
generating the processing rule and the first identifier
for identifying said processing rule, the processing
rule including a matching rule for matching with
information included in a packet and an instruction
for processing a packet that corresponds to the
matching rule; and

in a second unit of the control device, a sending step for
sending the processing rule and the first identifier to
said node, said node determining whether to process
a received packet according to the instruction
depending upon whether a second identifier attached
to the received packet corresponds to the first iden-
tifier.

